Насыщенный пар кратко. Насыщенные и ненасыщенные пары. Как образуется насыщенный и ненасыщенный пар

Пар называется насыщенным , если количество молекул вещества, переходящих в газообразное состояние, равно количеству молекул, возвращающихся в жидкую или твердую фазу. Это состояние динамического равновесия.
Если количество испаряющихся молекул больше, чем конденсирующихся, то пар ненасыщенный . Процесс испарения продолжается до тех пор, пока будет достигнуто состояние динамического равновесия, или пока все вещество не испарится.

Давление пара – что это?

Насыщенный и ненасыщенный пар прежде всего ассоциируется с водяным паром. Содержание пара в воздухе – важная характеристика климата, погодных условий, санитарно-гигиенических условий помещения. В то же время давление пара – это техническая характеристика состояния термодинамической системы.
При испарении в герметично закрытом сосуде пар оказывает давление на поверхность жидкости. Чем выше температура, тем выше давление пара. Оно может и железный котел разорвать, если слишком сильно повышать температуру.
В замкнутом сосуде между водой и паром быстро достигается динамическое равновесие, и пар становится насыщенным. На открытом воздухе чаще наблюдается ненасыщенный пар. Важная характеристика погодных условий – относительная влажность воздуха, которая вычисляется как отношение давления имеющегося в воздухе пара к давлению насыщенного пара при данной температуре .

Водяной пар: чем холоднее погода, тем суше воздух

Абсолютная влажность – это количество водяных паров, содержащихся в единице объема воздуха. При низких температурах в воздухе мало водяного пара, в абсолютном исчислении, но при этом пар может быть насыщенным или имеет относительную влажность более 90 %. При нагревании воздуха до 20° С абсолютное содержание остается прежним, но относительная влажность резко снижается, воздух становится сухим, абсолютная влажность может составлять 15-20 %.
Поэтому зимой в отапливаемом помещении чересчур сухой воздух, и это не связано с видом обогревателя, а связано лишь с разницей температур на улице и в помещении.

Насыщенный пар в термодинамике

Давление насыщенного пара при повышении температуры растет значительно быстрее, чем давление идеального газа при повышении температуры в замкнутом объеме. Именно поэтому для первых тепловых двигателей использовался водяной пар, а точнее система вода-пар. При нагревании такой системы увеличивается не только давление пара, но и количество молекул пара, их концентрация.

Жидкости имеют свойство испаряться. Если бы мы капнули на стол по капле воды, эфира и ртути (только не делайте этого в домашних условиях!), смогли бы наблюдать, как постепенно капли исчезают – испаряются. Одни жидкости испаряются быстрее, другие медленнее. Процесс испарения жидкости еще называется парообразованием. А обратный процесс превращения пара в жидкость – конденсацией.

Эти два процесса иллюстрируют фазовый переход – процесс перехода веществ из одного агрегатного состояния в другое:

  • испарение (переход из жидкого в газообразное состояние);
  • конденсация (переход из газообразного состояния в жидкое);
  • десублимация (переход из газообразного состояния в твердое, минуя жидкую фазу);
  • возгонка, она же сублимация (переход из твердого в газообразное состояние, минуя жидкое).

Сейчас, к слову, подходящий сезон, чтобы наблюдать процесс десублимации в природе: иней и изморозь на деревьях и предметах, морозные узоры на окнах – ее результат.

Как образуется насыщенный и ненасыщенный пар

Но вернемся к парообразованию. Мы продолжим экспериментировать и нальем жидкость – воду, например, в открытый сосуд, а к нему подсоединим манометр. Невидимое глазу, в сосуде происходит испарение. Все молекулы жидкости находятся в непрерывном движении. Некоторые движутся так быстро, что их кинетическая энергия оказывается сильнее той, что связывает молекулы жидкости вместе.

Покинув жидкость, эти молекулы продолжают хаотически двигаться в пространстве, подавляющее их большинство рассеивается в нем – так образуется ненасыщенный пар . Лишь небольшая их часть возвращается обратно в жидкость.

Если закроем сосуд, молекул пара постепенно будет становиться все больше. И все больше их будет возвращаться в жидкость. При этом будет увеличиваться давление пара. Это зафиксирует подсоединенный к сосуду манометр.

Спустя какое-то время число молекул, вылетающих из жидкости и возвращающихся в нее, сравняется. Давление пара перестанет изменяться. В результате насыщения пара установится термодинамическое равновесие системы жидкость-пар. То есть испарение и конденсация будут равны.

Свойства насыщенного пара

Чтобы их проиллюстрировать наглядно, используем еще один эксперимент. Призовите всю силу своего воображения, чтобы представить его. Итак, возьмем ртутный манометр, состоящий из двух колен – сообщающихся трубок. В оба налита ртуть, один конец открыт, второй запаян и над ртутью в нем находится еще некоторое количество эфира и его насыщенного пара. Если опускать и поднимать не запаянное колено, уровень ртути в запаянном будет также опускаться и подниматься.

При этом будет изменяться и количество (объем) насыщенного пара эфира. Разность уровней ртутных столбиков в обоих коленах манометра показывает давление насыщенного пара эфира. Оно будет сохраняться неизменным все время.

Отсюда вытекает свойство насыщенного пара – его давление не зависит от занимаемого им объема. Давление насыщенных паров различных жидкостей (воды и эфира, к примеру) разное при одинаковой температуре.

Однако температура насыщенного пара имеет значение. Чем выше температура, тем выше и давление. Давление насыщенного пара с увеличением температуры возрастает быстрее, чем это происходит с ненасыщенным паром. Температура и давление ненасыщенного пара связаны линейной зависимостью.

Можно провести еще один любопытный опыт. Взять пустую колбу без паров жидкости, закрыть ее и подсоединить манометр. Постепенно, по капле, подавать внутрь колбы жидкость. По мере поступления жидкости и ее испарения устанавливается давление насыщенного пара, наибольшее для данной жидкости при данной температуре.

Еще о температуре и насыщенном паре

Температура пара влияет и на скорость конденсации. Так же, как температура жидкости определяет скорость испарения – число молекул, которые вылетают с поверхности жидкости в единицу времени, другими словами.

У насыщенного пара его температура равна температуре жидкости. Чем выше температура насыщенного пара, тем выше его давление и плотность, ниже плотность жидкости. При достижении критической для вещества температуры плотность жидкости и пара одинаковая. Если температура пара выше критической для вещества температуры, физические различия между жидкостью и насыщенным паром стираются.

Определение давления насыщенного пара в смеси с другими газами

Мы сказали о неизменном при постоянной температуре давлении насыщенного пара. Мы определяли давление в «идеальных» условиях: когда в сосуде или колбе присутствуют жидкость и пар только одного вещества. Рассмотрим еще эксперимент, в котором молекулы вещества рассеяны в пространстве в смеси с другими газами.

Для этого возьмем два открытых стеклянных цилиндра и поместим в оба закрытые сосуды с эфиром. Как водится, подсоединим манометры. Один сосуд с эфиром раскрываем, после чего манометр фиксирует повышение давления. Разность между этим давлением и давлением в цилиндре с закрытым сосудом эфира и позволяет узнать давление насыщенного пара эфира.

О давлении и кипении

Испарение возможно не только с поверхности жидкости, но и в ее объеме – тогда его называют кипением. При повышении температуры жидкости образуются пузырьки пара. Когда давление насыщенного пара больше либо равно давлению газа в пузырьках, жидкость испаряется внутрь пузырьков. А те расширяются и поднимаются на поверхность.

Жидкости кипят при разных температурах. В обычных условиях вода закипает при 100 0 С. Но с изменением атмосферного давления меняется и температура кипения. Так, в горах, где воздух сильно разрежен и атмосферное давление ниже, по мере подъема в горы снижается и температура кипения воды.

Кстати, в герметично закрытом сосуде кипение невозможно вообще.

Еще один пример взаимосвязи давления пара и испарения демонстрирует такая характеристика содержания паров воды в воздухе, как относительная влажность воздуха. Она представляет собой отношение парциального давления паров воды к давлению насыщенного пара и определяется по формуле: φ = р/р о * 100%.

При понижении температуры воздуха концентрация водяных паров в нем повышается, т.е. они становятся более насыщенными. Эта температура называется точкой росы.

Подведем итоги

На несложных примерах мы разобрали суть процесса испарения и образующиеся в его результате ненасыщенный и насыщенный пар. Все эти явления вы ежедневно можете наблюдать вокруг себя: например, видеть высыхающие после дождя лужи на улицах или запотевшее от пара зеркало в ванной комнате. В ванной вы даже можете наблюдать, как сначала происходит парообразование, а потом конденсация скопившейся на зеркале влаги обратно в воду.

Вы также можете использовать эти знания, чтобы сделать свою жизнь более комфортной. Например, зимой во многих квартирах воздух очень сухой, и это плохо сказывается на самочувствии. Вы можете использовать современный прибор-увлажнитель, чтобы сделать его более влажным. Или по старинке поставить в комнате емкость с водой: постепенно испаряясь, вода насытит воздух своими парами.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Как вы знаете, жидкости испаряются, то есть превращаются в пар. Например, лужи после дождя высыхают. Испарение жидкости обусловлено тем, что некоторые ее молекулы благодаря толчкам своих «соседей» приобретают кинетическую энергию, достаточную для того, чтобы вырваться из жидкости.
В результате испарения над поверхностью жидкости всегда находится пар, Это газообразное состояние вещества. Водяной пар невидим, как и воздух. То, что часто называют паром, представляет собой скопление крошечных водяных капелек, образовавшихся вследствие конденсации пара.

Конденсация – это превращение пара в жидкость, то есть процесс, противоположный испарению. Вследствие конденсации содержащегося в воздухе водяного пара образуются облака (рис. 44.1) и туман (рис. 44.2). Холодное стекло запотевает, соприкасаясь с теплым воздухом (рис. 44.3). Это тоже результат конденсации водяного пара.

Динамическое равновесие

Если банку с водой плотно закрыть, уровень воды в ней остается неизменным в течение многих месяцев.

Означает ли это, что в закрытом сосуде жидкость не испаряется?

Нет, конечно: в ней всегда есть достаточно быстрые молекулы, которые непрестанно вылетают из жидкости. Однако одновременно с испарением идет конденсация: молекулы из пара влетают обратно в жидкость.

Если уровень жидкости со временем не изменяется, это означает, что процессы испарения и конденсации идут с одинаковой интенсивностью. В таком случае говорят, что жидкость и пар находятся в динамическом равновесии.

2. Насыщенный и ненасыщенный пар

Насыщенный пар

На рисунке 44.4 схематически изображены процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии.

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным.

Ненасыщенный пар

Если сосуд с жидкостью открыть, пар начнет выходить из сосуда наружу. Вследствие этого концентрация пара в сосуде уменьшится, и молекулы пара будут реже сталкиваться с поверхностью жидкости и влетать в нее. Поэтому интенсивность конденсации уменьшится.

А интенсивность испарения остается прежней. Поэтому уровень жидкости в сосуде начнет понижаться. Если процесс испарения идет быстрее, чем процесс конденсации, говорят, что над жидкостью находится ненасыщенный пар (рис. 44.5).

В воздухе всегда есть водяной пар, но обычно он является ненасыщенным, поэтому испарение преобладает над конденсацией. Поэтому лужи и высыхают.

Над поверхностью морей и океанов пар также ненасыщенный, поэтому они постепенно испаряются. Почему же уровень воды при этом не понижается?

Дело в том, что поднимающийся вверх пар охлаждается и конденсируется, образуя облака и тучи. Они превращаются в дождевые тучи и проливаются дождями. А реки несут воду обратно в моря и океаны.

3. Зависимость давления насыщенного пара от температуры

Главное свойство насыщенного пара состоит в том, что
давление насыщенного пара не зависит от объема, а зависит только от температуры.

Это свойство насыщенного пара не так легко понять, потому что оно кажется противоречащим уравнению состояния идеального газа

pV = (m/M)RT, (1)

из которого следует, что для донной массы газа при постоянной температуре давление обратно пропорционально объему. Может быть, для насыщенного пара это уравнение неприменимо?

Ответ таков: уравнение состояния идеального газа хорошо описывает пар – как насыщенный, так и ненасыщенный. Но стоящая в правой части уравнения (1) масса насыщенного пара m при изотермическом расширении или сжатии изменяется – причем так, что давление насыщенного пара остается неизменным. Почему так происходит?

Дело в том, что при изменении объема сосуда пар может оставаться насыщенным только при условии, что в этом же сосуде находится «его» жидкость. Увеличивая изотермически объем сосуда, мы как бы «вытягиваем» из жидкости молекулы, которые становятся молекулами пара (рис. 44.6, а).

Происходит это вот почему. При увеличении объема пара его концентрация вначале уменьшается – но на очень короткий промежуток времени. Как только пар становится ненасыщенным, испарение находящейся в этом же сосуде жидкости начинает «опережать» конденсацию. В результате масса пара быстро возрастает, пока он снова не станет насыщенным. Давление пара при этом снова станет прежним.

1. Используя рисунок 44.6, б, объясните, почему при уменьшении объема насыщенного пара его масса уменьшается.

Итак, при расширении или сжатии насыщенного пара его масса изменяется за счет изменения массы содержащейся в этом же сосуде жидкости.

Зависимость давления насыщенного водяного пара от температуры измерена на опыте. График этой зависимости приведен на рисунке 44.7. Мы видим, что давление насыщенного пара очень быстро увеличивается с ростом температуры.

Главная причина увеличения давления насыщенного пара с ростом температуры – увеличение массы пара. Как вы сами убедитесь, выполняя следующее задание, при увеличении температуры от 0 ºС до 100 ºС масса насыщенного пара в одном и том же объеме увеличивается более чем в 100 раз!

В таблице приведены значения давления насыщенного водяного пара при некоторых значениях температуры.

Эта таблица поможет вам при выполнении следующего задания. Воспользуйтесь также формулой (1).

2. В герметически закрытом сосуде объемом 10 л находятся вода и насыщенный пар. Температуру содержимого сосуда повышают от 0 ºС до 100 ºС. Считайте, что объемом воды по сравнению с объемом пара можно пренебречь.
а) Во сколько раз увеличилась абсолютная температура?
б) Во сколько раз увеличилось бы давление пара, если бы он остался насыщенным?
в) Во сколько раз увеличилась бы масса пара, если бы он остался насыщенным?
г) Какой стала бы масса пара в конечном состоянии, если бы он остался насыщенным?
д) При какой минимальной массе воды в начальном состоянии пар останется насыщенным?
е) Каким будет давление пара в конечном состоянии, если начальная масса воды будет в 2 раза меньше найденной в предыдущем пункте?

3. Что увеличивается с ростом температуры быстрее – давление насыщенного пара или его плотность?
Подсказка. Формулу (1) можно записать в виде

4. Пустой герметически закрытый сосуд объемом 20 л заполнили насыщенным водяным паром при температуре 100 ºС.
а) Чему равно давление пара?
б) Чему равна масса пара?
в) Чему равна концентрация пара?
г) Каким станет давление пара, когда он остынет до 20 ºС?
д) Чему равны массы пара и воды при 20 ºС?
Подсказка. Воспользуйтесь приведенной выше таблицей и формулой (1).

4. Кипение

По приведенным выше графику (рис. 44 7) и таблице вы, наверное, заметили, что при температуре кипения воды (100 ºС) давление насыщенного водяного пара как раз равно атмосферному (пунктир на графике 44.7). Случайно ли это совпадение?

Нет, не случайно. Рассмотрим процесс кипения.

Поставим опыт
Будем нагревать воду в открытом прозрачном сосуде. Скоро на стенках сосуда появятся пузырьки. Это выделяется растворенный в воде воздух.

Внутрь этих пузырьков начинает испаряться вода, и пузырьки заполняются насыщенным паром. Но расти эти пузырьки не могут, пока давление насыщенного пара меньше давления в жидкости. В открытом неглубоком сосуде давление в жидкости практически равно атмосферному давлению.

Продолжим нагревать воду. Давление насыщенного пара в пузырьках с ростом температуры быстро увеличивается. И как только оно станет равным атмосферному давлению, начнется интенсивное испарение жидкости внутрь пузырьков.

Они будут быстро расти, подниматься вверх и лопаться на поверхности жидкости (рис. 44.8). Это и есть кипение.

В неглубоком сосуде давление в жидкости практически равно внешнему давлению. Поэтому мы можем сказать, что
кипение жидкости происходит при температуре, при которой давление p н насыщенного пара равно внешнему давлению p внеш:

p н = p внеш. (2)

Отсюда следует, что температура кипения зависит от давления. Поэтому ее можно изменять, изменяя давление жидкости. С увеличением давления температура кипения жидкости повышается. Это используют, например, для стерилизации медицинских инструментов: воду кипятят в специальных приборах – автоклавах, где давление в 1,5–2 раза выше нормального атмосферного.

Высоко в горах, где атмосферное давление существенно меньше нормального атмосферного, сварить мясо непросто: например, на высоте 5 км вода закипает уже при температуре 83 ºС.

5. Используя формулу (2) и приведенную выше таблицу, определите температуру кипения воды:
а) при давлении, равном одной пятой нормального атмосферного давления;
б) при давлении, в 2 раза большем атмосферного давления.

Кипение воды при пониженном давлении можно наблюдать в следующем опыте.

Поставим опыт
Доведем воду в колбе до кипения и плотно закроем колбу. Когда вода немного остынет, перевернем колбу и будем поливать ее дно холодной водой. Вода закипит, хотя ее температура существенно ниже 100 ºС (рис. 44.9).

6. Объясните этот опыт.

7. На какую высоту можно было бы поднять поршнем кипящую воду, если бы она при этом не остывала?


Дополнительные вопросы и задания

8. В цилиндрическом сосуде под поршнем длительное время находятся вода и водяной пар. Масса воды в 2 раза больше массы пара. Медленно перемещая поршень, объем под поршнем увеличивают от 1 л до 6 л. Температура содержимого сосуда остается все время равной 20 ºС. Считайте, что объемом воды можно пренебречь по сравнению с объемом пара.
а) Какой пар находится под поршнем вначале?
б) Объясните, почему давление в сосуде не будет изменяться до тех пор, пока объем под поршнем не станет равным З л.
в) Чему равно давление в сосуде, когда объем под поршнем равен 3 л?
г) Чему равна масса пара в сосуде, когда объем под поршнем равен 3 л?
Подсказка. При этом весь объем сосуда заполнен насыщенным паром.
д) Во сколько раз увеличилась масса пара, когда объем под поршнем увеличился от 1 л до 3 л?
е) Чему равна масса воды в начальном состоянии?
Подсказка. Воспользуйтесь тем, что в начальном состоянии масса воды в 2 раза больше массы пара.
ж) Как будет изменяться давление в сосуде при изменении объема под поршнем от 3 л до 6 л?
Подсказка. Для ненасыщенного пара справедливо уравнение состояния идеального газа с постоянной массой.
з) Чему равно давление в сосуде, когда объем под поршнем равен 6 л?
и) Начертите примерный график зависимости давления пара под поршнем от объема.

9. Две запаянные U-образные трубки наклонили, как показано на рисунке 44.10. В какой трубке над водой находится только насыщенный пар, а в какой воздух с паром? Обоснуйте свой ответ.

При испарении одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших ее, снова возвращается в жидкость.

Давление насыщенного пара.

При сжатии насыщенного пара, температура которого под-держивается постоянной, равновесие сначала начнет нарушаться: плотность пара возрастет, и вследствие этого из газа в жидкость будет переходить больше молекул, чем из жидкости в газ; продолжаться это будет до тех пор, пока концентрация пара в новом объеме не станет прежней, соответствующей концентрации насыщенного пара при данной температуре (и равновесие восста-новится). Объясняется это тем, что число молекул, покидающих жидкость за единицу времени, зависит только от температуры.

Итак, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема.

Поскольку давление газа пропорционально концентрации его молекул, то и давление насыщенного пара не зависит от занимаемого им объема. Давление р 0 , при котором жидкость находит-ся в равновесии со своим паром, называют давлением насыщенного пара .

При сжатии насыщенного пара большая его часть переходит в жидкое состояние. Жидкость занимает меньший объем, чем пар той же массы. В результате объем пара при неизменной его плотности уменьшается.

Зависимость давления насыщенного пара от температуры.

Для идеального газа справедлива линейная зависимость давления от температуры при постоянном объеме. Применительно к насыщенному пару с давлением р 0 эта зависимость выражается равенством:

p 0 =nkT.

Так как давление насыщенного пара не зависит от объема, то, следова-тельно, оно зависит только от температуры.

Экспериментально определенная зависимость p 0 (T) отличается от зави-симости (p 0 =nkT ) для идеального газа.

С увеличением температуры давление насыщенного пара растет быстрее, чем давление идеального га-за (участок кривой АВ на рисунке). Это становится особенно очевидным, если провести изохору через точку A (пунктирная прямая). Происходит это потому, что при нагревании жидкости часть ее превращается в пар, и плотность пара растет. Поэтому, согласно формуле (p 0 =nkT ), давление насы-щенного пара растет не только в результате повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. Главное различие в поведении идеального газа и насыщенного пара заключается в из-менении массы пара при изменении температуры при неизменном объеме (в закрытом сосуде) или при изменении объема при постоянной температуре. С идеальным газом ничего подобного происходить не может (молекулярно-кинетическая теория идеального газа не предусматривает фазового перехода газа в жидкость).

После испарения всей жидкости поведение пара будет соответствовать поведению идеального газа (участок ВС кривой на рисунке выше).

Ненасыщенный пар.

Если в пространстве, содержащем пары какой-либо жидкости, может происходить дальнейшее испарение этой жидкости, то пар, находящийся в этом пространстве, является ненасыщенным.

Пар, не находящийся в состоянии равновесия со своей жидкостью, называется ненасыщенным.

Ненасыщенный пар можно простым сжатием превратить в жидкость. Как только это превращение началось, пар, находящийся в равновесии с жидкостью, становится насыщенным.

После закипания температура воды перестает расти и остается неизменной до полного испарения. Парообразование - это процесс перехода из жидкого состояния в пар, который имеет тот же температурный показатель, что и кипящая жидкость. Это испарение получило название насыщенный пар. Когда вся вода испаряется, любое последующее добавление тепла повышает температуру. Нагретый пар за уровнем насыщенного называется перегретым. В промышленности обычно используется насыщенный пар для отопления, приготовления пищи, сушки или других процедур. Перегретый используется исключительно для турбин. Различные типы пара имеют разные энергии обменного потенциала и это оправдывает их применение в совершенно различных целях.

Пар как одно из трех физических состояний

Лучше понять свойства пара может помочь понимание общего молекулярного и атомарного строения вещества, а также применение этого знания касательно льда, воды и пара. Молекула - это наименьшая единица любого элемента или соединения. Она, в свою очередь, состоит из еще более мелких частиц, называемых атомами, которые определяют базовые элементы, такие как водород и кислород. Конкретные комбинации этих атомарных элементов обеспечивают соединение веществ. Одно из таких соединений представлено химической формулой Н 2 О, молекулы которого состоят из 2 атомов водорода и 1 атома кислорода. Углерода имеется также в изобилии, это ключевой компонент всех органических веществ. Большинство минеральных веществ могут существовать в трех физических состояниях (твердое тело, жидкость и пар), которые называются фазами.

Процесс образования пара

Когда температура воды приближается к точке кипения, некоторые молекулы получают достаточное количество кинетической энергии для достижения скоростей, которые позволяют им на мгновение отделиться от жидкости в пространстве над поверхностью, прежде чем вернуться. Дальнейшее нагревание вызывает большее возбуждение и число молекул, желающих покинуть жидкость, увеличивается. При атмосферном давлении температура насыщения составляет 100 °С. Пар с температурой кипения при таком давлении носит название сухой насыщенный пар. Как фазовый переход от льда к воде, процесс испарения является также обратимым (конденсация). Критическая точка - это наибольшая температура, при которой вода может находиться в жидком состоянии. Выше этой точки пар может рассматриваться как газ. Газообразное состояние является подобием диффузного, в котором молекулы имеют почти неограниченную возможность движения.


Взаимосвязь переменных

При заданной температуре существует определенное давление пара, которое существует в равновесии с жидкой водой. Если этот показатель растет, пар перегревается и называется сухим. Существует взаимосвязь между давлением и температурой: зная одно значение, можно определить другое. Состояние пара определяется тремя переменными: давлением, температурой и объемом. Сухой насыщенный пар - это состояние, когда пар и вода могут присутствовать одновременно. Иными словами, это происходит тогда, когда скорость парообразования равна скорости конденсации.

Насыщенный пар и его свойства

При обсуждении свойств насыщенного пара его часто сравнивают с иде-аль-ным газом. Есть ли у них что-то общее или это простое заблуждение? Во-первых, при неизменном уровне тем-пе-ра-ту-ры плот-ность не находится в за-ви-симости от объ-е-ма. Визуально это можно себе представить следующим образом: нужно визуально уменьшить объем емкости с паром, не изменяя при этом температурные показатели. Число конденсируемых мо-ле-кул будет пре-восходить число испаряющихся, а пар будет возвращаться в со-сто-я-ние баланса. В результате плот-ность будет неизменным параметром. Во-вторых, такие характеристики, как дав-ле-ние и объ-е-м, не зависят друг от друга. В-третьих, учитывая неизменность объ-е-мных характеристик, плот-ность молекул возрастает, когда растет тем-пе-ра-ту-ра, и становится меньше, когда она понижается. На самом деле, при нагревании вода начинает испаряться быстрее. Баланс в этом случае будет нарушен и не будет восстановлен до тех пор, пока плот-ность пара не вернется на прежние позиции. При конденсации, наоборот, плотность насыщенного пара будет уменьшаться. В отличие от идеального газа, насыщенный пар нельзя назвать замкнутой системой, так как он постоянно контактирует с водой.

Преимущества в сфере отопления

Насыщенным называется чистый пар в непосредственном контакте с жидкой водой. Он обладает многими характеристиками, которые делают его отличным источником тепловой энергии, особенно это касается высоких температур (выше 100 °C). Некоторые из них:


Различные виды пара

Пар - это газообразная фаза воды. Он использует тепло во время своего образования и выделяет большое количество тепла после этого. Следовательно, он
может быть использован в качестве рабочего вещества для тепловых двигателей. Известны следующие состояния: влажный насыщенный, сухой насыщенный и перегретый. Насыщенный пар предпочтительнее перегретого пара в качестве теплоносителя в теплообменниках. Когда он выбрасывается в атмосферу из труб, часть его конденсируется, образуются облака белого влажного испарения, содержащего мельчайшие капельки воды. Перегретый пар не будет подвержен конденсации, даже при вступлении в непосредственный контакт с атмосферой. В перегретом состоянии он будет иметь большую теплоотдачу за счет ускорения движения молекул и меньшей плотности. Наличие влаги вызывает осаждение, коррозию и снижению продолжительности службы котлов или другого теплообменного оборудования. Следовательно, сухой пар является предпочтительным, поскольку он вырабатывает больше энергии и не вызывает коррозии.

Сухой и насыщенный: в чем противоречие

Многие путаются с терминами "сухой" и "насыщенный". Как может быть нечто одновременно и тем и другим? Ответ кроется в терминологии, которую мы используем. Термин «сухой» связывают с отсутствием влаги, то есть «не мокрый». «Насыщенный» означает "замоченный", "промокший", "затопленный", "заваленный" и так далее. Все это, казалось бы, подтверждает противоречие. Однако в паровой инженерии термин «насыщенный» имеет другое значение и в данном контексте означает состояние, при котором происходит кипение. Таким образом, температура, при которой происходит кипение, известна технически как температуры насыщения. Сухой пар в данном контексте не имеет в себе влаги. Если понаблюдать за кипящим чайником, то можно увидеть выходящее из носика чайника белое испарение. На самом деле, это смесь сухого бесцветного пара и влажного пара, содержащего в себе капельки воды, которые отражают свет и окрашиваются в белый цвет. Поэтому термин «сухой насыщенный пар» означает, что пар обезвожен и не перегрет. Свободное от частиц жидкости, это вещество в газообразном состоянии, которое не следуют общим газовым законам.